THE SPAM FILTERING PLATEAU AT 99.9% ACCURACY AND HOW TO GET PAST IT.*

WILLIAM S. YERAZUNIS, PHD

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)

CAMBRIDGE, MA

WSY@MERL.COM

* INCLUDES CLARIFICATIONS AND EXAMPLES EXPANDED FROM PRESENTATION GIVEN AT THE MIT SPAM CONFERENCE 2004

SPAM FILTERING STATE OF THE ART

BAYESIAN FILTERS HAVE BECOME "THE WAY".

THERE ARE MORE THAN A DOZEN AVAILABLE ON SOURCEFORGE ALONE.

Mozilla mail now includes a Bayesian option

SPAMASSASSIN HAS AN OPTION TO INCLUDE A BAYESIAN "HEURISTIC".

THE STATE OF THE ART PART II

MOST BAYESIAN FILTERS REPORT ACCURACY ON THE ORDER OF 99% TO 99.9%

BUT NONE OF THE FILTERS REPORT ACCURACY PAST THIS LEVEL. THERE'S NO "GAUSSIAN TAIL".

HOW TO GET PAST THIS PLATEAU AT 99.9% ACCURACY IS

THE ULTIMATE GOAL OF THIS TALK

STATE OF THE **ANT**I-ART

SPAMMERS HAVE REACTED TO BAYESIAN FILTERS!

(THAT'S GOOD NEWS- IT MEANS THAT FILTERING HAS MADE A SIGNIFICANT IMPACT AGAINST SPAMMERS. SPAMMERS WOULD NOT HAVE REACTED IF IT WASN'T MAKING A DIFFERENCE.)

- "LONG STORY" SPAM*
- "DICTIONARY SALAD" SPAM
- JOINING WELL-CREDENTIALED LISTS
- News Story Spam
- HABEAS HAIKU SPAM

* THE AUTHOR FALLS FOR THESE A LOT.

THE TYPICAL MODERN SPAM FILTER

- BAYESIAN CLASSIFIER
- TRAINING:
- > TRAIN ON ERRORS (TOE STRATEGY)
- TRAIN EVERY THING (TEFT STRATEGY, A.K.A. "BULK" TRAINING)
- > TRAIN UNTIL NO ERRORS (TUNE STRATEGY)
- ONLY TOP N FEATURES (OR "PEAKS") ARE USED FOR CLASSIFICATION

IS THIS OPTIMAL?

TESTING A SPAM FILTER

- USE THE SPAMASSASSIN TEST SET*
- 4147 MESSAGES (1400 SPAM, REMAINDER GOOD)
- SHUFFLE TEN TIMES TO FORM 10 "STOCK" RUNS
- RESET LEARNING AFTER EACH STOCK RUN
- EACH METHOD SEES THE SAME 10 STOCK RUNS
- RESERVE FINAL 500 MESSAGES OF EACH RUN AS THE "TEST SET"

*THIS TEST SET IS A SEVERE TORTURE TEST. THE AUTHOR SCORES LESS THAN 90% ACCURACY ON THIS TEST SET.

WHAT TRAINING METHOD WORKS BEST?

TRAINING METHOD (ALL USING SBPH)

ERROR COUNT (LOW IS GOOD)

TEFT (TRAIN EVERY THING)

TOE (TRAIN ONLY ERRORS)

TUNE (TRAIN UNTIL NO ERRORS)*

What Training Method Works Best?

TRAINING METHOD (ALL USING SBPH)

ERROR COUNT (LOW IS GOOD)

TEFT (TRAIN EVERY THING)

149

TOE (TRAIN ONLY ERRORS)

69

TUNE (TRAIN UNTIL NO ERRORS)*

54

*RESIDUAL ERROR DUE TO CUT OFF IN TRAINING AT 3 OUT OF 41470. BECAUSE **TUNE** REQUIRES KEEPING **ALL** PRIOR EMAILS AS PART OF THE RETRAINING CORPUS, IT BECOMES INTRACTABLE FOR LARGE INSTALLATIONS.

WHY IS BULK TRAINING SUBOPTIMAL?

HYPOTHESES*:

- ADDS EXTRANEOUS FEATURES
- POOR EXAMPLES GET THE SAME WEIGHTING AS GOOD EXAMPLES
- OVERLOADS LIMITED-SIZE DATABASES AND FORCES VALUABLE INFORMATION TO BE FLUSHED (BUT FLUSHING OBSOLETE INFORMATION IS NOT NECESSARILY A BAD THING)

^{*} NOTE THAT CORRECT PLURAL FORM OF "HYPOTHESIS" IS ACTUALLY PRONOUNCED "CONFUSION"

IS FORGETTING GOOD?

YES

FEATURES IN A CORPUS CAN CHANGE POLARITY.
FORGETTING OLD DATA ALLOWS THE DATABASE
TO TRACK EVOLUTION IN SPAM MORE ACCURATELY

IS FORGETTING GOOD?

YES....

BUT

FORGET AS LITTLE AS POSSIBLE.

DON'T GROOM ALL OF THE HAPAXES OUT AN ENTIRE DATABASE. INSTEAD, RANDOMLY DELETE ONLY A FEW, AND ONLY AS NEEDED TO MAKE SPACE FOR INCOMING FEATURES

THIS YIELDS A > 3X IMPROVEMENT IN ACCURACY OVER "BLOCK PURGE" OR "HAPAX PURGE" DATABASE CLEANING.

WHAT EVAL ALGORITHM WORKS BEST?

METHOD (TOE TRAINING)

ERROR COUNT (LOW IS GOOD)

FIRST ORDER BAYESIAN*
PEAK WINDOW VALUE ONLY (W=5)
TOKEN SEQUENCE SENSITIVE (W=5)
TOKEN GRAB BAG (W=5)
SPARSE BINARY POLYNOMIAL HASH
MARKOVIAN WITH 2^{2N} WEIGHTING

* USING ALL FEATURES - NOT "TOP 1000"

What Eval Algorithm Works Best?

METHOD (TOE TRAINING)

ERROR COUNT (LOW IS GOOD)

FIRST ORDER BAYESIAN	92
PEAK WINDOW VALUE ONLY (W=5)	80
TOKEN SEQUENCE SENSITIVE (W=5)	78
TOKEN GRAB BAG (W=5)	7 1
SPARSE BINARY POLYNOMIAL HASH	69

MARKOVIAN WITH 2^{2N} WEIGHTING
(THE WINNER IN ALL SINGLE-PASS
TECHNIQUES SO FAR)

56

HOW GOOD IS MARKOVIAN SPAM FILTERING?

MY CURRENT STATISTICS WITH CRM 1 1 4 USING A 22N MARKOVIAN HOVER AROUND 99.9%

4 WEEKS (DEC 15 - JAN 12) RAW SCORES:

TOTAL SPAM	4677
TOTAL NONSPAM	4385
TOTAL MAIL	9062

FALSE ACCEPTS	6
FALSE REJECTS	2
HUMAN CAN'T DECIDE EITHER	3

N+1 ACCURACY

99.90%

BUT LAST YEAR YOU HAD 99.91% ACCURACY (N+1). WHAT HAPPENED?

1) NEW ERROR SOURCE: PENETRATION OF WELL-CREDENTIALED LISTS

2) NEARLY TRIPLE THE RATE OF INCOMING SPAMS:

LAST YEAR: 1140 SPAMS

THIS YEAR: 4677 SPAMS*

3) MY UPSTREAM STARTED DISCARDING DNSRBL SPAM SO I LOST A LOT OF LOW-HANGING FRUIT.

* UPSTREAM DNSRBL DISCARDS AT 50% OF ALL MAIL

Where did the Errors Happen?

FALSE ACCEPTS 6 - 2 = 4
(2 SPAMMERS GOT ONTO PREVIOUSLY WELL-CREDENTIALED LISTS)

FALSE REJECTS 2 - 2 = 0(2 "USERS" VIOLATED RULES ON SAID LISTS AND WERE SUMMARILY BOUNCED)

NOTE THAT IT'S ALMOST IMPOSSIBLE TO TELL THE DIFFERENCE BETWEEN THE TWO CASES!

ARGUABLE N+1 ACCURACY FOR MARKOVIAN FILTER:

99.95%

HOW A MARKOVIAN IS DIFFERENT

- (1) A MARKOVIAN DISCRIMINATOR TRIES TO MATCH THE INCOMING TEXT AGAINST THE HIDDEN MARKOV MODELS OF THE TWO TEXT CORPI.
- (2) WE DO NOT TRY TO ACTUALLY CALCULATE THAT HIDDEN MARKOV MODEL (BECAUSE OF TRACTABILITY ISSUES)
- (3) THE LONGER A CHAIN WE MATCH (EVEN A CHAIN CONTAINING A FEW ERRORS) THE STRONGER THE EVIDENCE FOR DISCRIMINATION.

ONE REASON WHY A MARKOVIAN IS BETTER

CONSIDER THE "PERCEPTRON THEOREM"*

A LINEAR COMBINATIONAL DECISION ALGORITHM CAN **NOT** DISCRIMINATE THE CASE:

A OR B BUT NOT BOTH.

A CROSS-PRODUCT DECISION ALGORITHM HAS NO SUCH LIMITATION.

* Minsky and Papert, <u>Perceptrons</u>, 1969

HANDWAVING MATHEMATICS

If the weights of the Markovian terms are superincreasing (such as 2^{2N}), then long corpus chains can overrule single words and short chains.

THIS MAKES THE MARKOVIAN FILTER EQUIVALENT TO A CROSS-PRODUCT DECISION ALGORITHM, CAPABLE OF NONLINEAR FILTERING WITHOUT AN INTERMEDIATE LAYER OF COMPUTED METAFEATURES.

HOW TO TURN A BAYESIAN INTO A MARKOVIAN

- (1) CHANGE THE FEATURE GENERATOR FROM SINGLE WORDS TO **SPANNING** MULTIPLE WORDS *
- (2) CHANGE THE WEIGHTING SO THAT LONGER FEATURES HAVE MORE WEIGHT (IE. LONGER FEATURES GENERATE LOCAL PROBABILITIES CLOSER TO O.O AND 1.0)
- (3) THE 2^{2N} WEIGHTING MEANS THAT THE WEIGHTS WERE 1, 4, 16, 64, 256, ... FOR SPAN LENGTHS OF 1, 2, 3, 4, 5 ... WORDS

^{*} ROHAN MALKHARE AT USF HAS A VERY NICE EXTENSION OF THIS TO A STATISTICAL MODEL OF AN ENTIRE MESSAGE..... HE HAS BEEN ADVISED TO PUBLISH AS SOON AS POSSIBLE.

MARKOVIAN EXAMPLE

GIVEN THE TEXT:

The quick brown fox jumped

THE MARKOVIAN FEATURES ARE:

	Feature Text	weight
The		1
The	quick	4
The	<skip> brown</skip>	4
The	quick brown	16
The	<skip> <skip> fox</skip></skip>	4
The	quick <skip> fox</skip>	16
The	<skip> brown fox</skip>	16
The	quick brown fox	64
AND	SO ON	

HOW TO USE THE WEIGHTS

IF YOUR BAYESIAN LOCAL PROBABILITY IS:

$$P_{LOCAL} = 0.5 + ----GOOD + BAD$$

$$GOOD+BAD+1$$

THEN THE EQUIVALENT MARKOVIAN LOCAL PROBABILITY IS:

$$(GOOD - BAD) * WEIGHT$$

$$P_{LOCAL} = 0.5 + \cdots$$

$$(GOOD+BAD+1) * WEIGHT_{MAX}$$

BUT EVEN A FULL MARKOVIAN IS NOT ENOUGH

A MARKOVIAN FILTER MAKES FEWER ERRORS THAN A BAYESIAN FILTER

BY ABOUT THE SAME MARGIN AS

A LIGHT BEER HAS FEWER CALORIES THAN A REGULAR BEER.

PREPROCESSING TO HELP FILTERING?

MOST SPAM FILTERS NOW ALSO DO:

- KEY-TOKENIZING (ADDING METAWORDS WHEN A PARTICULAR HEURISTICALLY-DEFINED FEATURE IS FOUND)
- BASE-64 DECONSTRUCTION
- HTML DECOMMENTING AND PARTIAL RENDERING ("EYE-SPACE"* RATHER THAN E-SPACE)
- * (Darren Leigh's pun. Blame him)

CURRENT STATE OF AFFAIRS

WITH ALL OF THESE ASSISTS, THE BEST WE HAVE DONE IS 99.95%

WHAT'S THE **NEXT** STEP?

A FEW POSSIBILITIES FOR THE FUTURE

- AUTHENTICATED SENDERS (??)
- DEFENSE IN DEPTH (MULTIPLE LAYERS OF FILTERING)
- EMAIL INOCULATION
- EMAIL MINEFIELDS
- JUST-IN-TIME FILTERING

AUTHENTICATED SENDERS

- PLENTY OF BUSINESS MODELS; PLENTY OF COMPETITION FOR STANDARDS
- PLENTY OF LEGAL ISSUES
- F A COMPANY CLAIMS **CAN-SPAM** LEGAL COMPLIANCE, HOW CAN AN AUTHENTICATION AUTHORITY DENY AN AUTHENTICATION TOKEN TO A KNOWN SPAMMER, LET ALONE A "FRONT"?
- LOSS OF INTERNET ANONYMITY (A SIGNIFICANT LOSS OF INTERNET SOCIAL EQUALITY)
- •ABILITY OF CORPORATIONS TO CENSOR UNPOPULAR POINTS OF VIEW WITHOUT OVERSIGHT

DEFENSE IN DEPTH (MULTIPLE LAYERS)

- AUTOMATIC WHITE/BLACKLIST MAINTENANCE
- AUTOMATIC SENDER AUTHENTICATION
- BAYESIAN/MARKOVIAN LAYER
- AUTOMATIC MICROPAYMENT OR HASH-CASH AS THE FINAL ARBITER.

AN INTEGRATED SYSTEM USING THE ABOVE IS CALLED CAMRAM* AND IS UNDER TEST.

* RESULTS WILL BE PRESENTED IN ANOTHER PAPER BY ERIC JOHANSSON.

ONE MAN'S PAIN IS ANOTHER MAN'S PLEASURE⁹⁹

-MARQUIS DE SADE

ONE MAN'S PAIN IS ANOTHER MAN'S PLEASURE⁹⁹

-MARQUIS DE SADE

INOCULATION IS A MEANS OF USING THE PAIN OF ONE SPAM RECIPIENT TO PROTECT A LARGE NUMBER OF OTHER RECIPIENTS.

INOCULATION BASICS

• INOCULATION IS BASED ON THE OBSERVATION THAT SPAM IS WRITTEN ONCE AND THEN SENT TO MILLIONS OF USERS REPEATEDLY.*

EVEN A PREVIOUSLY UNSEEN SPAM WILL BE STOPPED BY A FILTER IF THE FILTER CAN BE PRE-INOCULATED TO REJECT THE SPAM

*MODULO \$RANDOM_STR INSERTION TO FOIL SIMPLE CHECKSUMMING FILTERS

INOCULATION MECHANICS

- User A receives a mis-filtered spam
- USER A LABELS THE SPAM AND FORWARDS TO B
- User B's mail agent verifies A as privileged
- User B's mail filter Learns the particulars of this new spam
- User B's filter is now inoculated against the spamb

INOCULATION RESULTS

- INOCULATION APPEARS TO HAVE VERY GOOD CHARACTERISTICS, ESPECIALLY AMONG OVERLAPPING CIRCLES OF KNOWN FRIENDS.
- JONATHAN A. ZDZIARSKI AND I ARE PROPOSING AN RFC TO STANDARDIZE THE FORMAT FOR CROSS-PLATFORM FILTER INOCULATIONS

FURTHER DETAILS AND RESULTS WILL BE PRESENTED IN JONATHAN'S TALK.(*)

* BLATANT TEASER

THE EMAIL MINEFIELD

- INOCULATION DEPENDS ON HUMAN INTERVENTION TO RECOGNIZE THE FIRST OCCURRENCE OF EACH AND EVERY SPAM
- MINEFIELDS ONLY REQUIRE THE CREATION OF NEW ACCOUNTS THAT ARE PURPOSELY "LEAKED" TO SPAMMERS, AND THEN OPERATE AUTOMATICALLY.
- ANY EMAIL TO SUCH MINEFIELD ACCOUNTS IS KNOWN A PRIORI TO BE SPAM.

INTEGRATING EMAIL MINEFIELDS

• MINEFIELD ACCOUNTS ARE A GOOD SOURCE FOR AUTOMATIC INOCULATION.

 INOCULATION IS NOT RESTRICTED TO THE TEXT OF A SPAM.

INTEGRATING EMAIL MINEFIELDS (2)

 CONSIDER THE OTHER INFORMATION AVAILABLE WHEN A MINEFIELD ACCOUNT IS TRIGGERED:

THE IP OF THE CALLER IS KNOWN

AND IT'S NOT SPOOFABLE

- ANY IP ADDRESS OR DOMAIN SENDING TO A MINEFIELD ACCOUNT CAN BE INSTANTLY AND AUTOMATICALLY BLACKHOLED, NOT JUST BY A USER, BUT BY AN ENTIRE SET OF COOPERATING SITES.
- •THE BLACKHOLING CAN BE TIME-LIMITED, OR PERMANENT FOR REPEATED SPAMMERS

MINEFIELD RESULTS

HOW WELL DO EMAIL MINEFIELDS WORK?

- WE DON'T KNOW! WE'RE STILL WORKING THROUGH HOW WELL INOCULATION ITSELF WORKS.
- -- BUT WE'LL LET YOU KNOW....

THEORETICALLY*, ACCURACY SHOULD IMPROVE LINEARLY WITH THE NUMBER OF PEOPLE YOU SHARE INOCULATION DATA WITH (E.G. 10 PEOPLE GIVES YOU 10x ACCURACY)

* BUT THAT'S ONLY THEORY.

JUST-IN-TIME FILTERING

CURRENT EMAIL DELIVERY SYSTEMS FILTER UPON ARRIVAL (SO-CALLED "SMTP TIME").

THIS IS SUBOPTIMAL FOR SYSTEMS WITH INOCULATION OR MINEFIELDING

OBSERVATION- SOME OPTIMIZED SPAMMERS WILL HIT EVERY ACCOUNT ON A SMALL SITE IN LESS THAN TEN SECONDS.

THIS ISN'T ENOUGH TIME TO ALLOW AN INOCULATION TO PROPAGATE

JUST-IN-TIME FILTERING (2)

IF YOU DON'T HAVE CROSS-SITE HIGH-BANDWIDTH MINEFIELDING CONNECTIONS, YOU NEED TO FILTER TWICE:

- FIRST FILTER SMTP TIME REJECT ANYTHING THAT YOU ARE SURE IS A SPAM.
- SECOND FILTER USER-READ TIME WHEN A USER ACTUALLY IS PULLING EMAIL FROM THE SPOOL, FILTER AGAIN.

THIS DELAY ALLOWS THE GREATEST POSSIBLE TIME WINDOW FOR INOCULATIONS AND MINEFIELD MESSAGES TO ARRIVE.

CONCLUSIONS:

- BAYESIANS ARE VERY GOOD
- MARKOVIANS ARE EVEN BETTER
- Neither by itself is sufficient
- JUST AS BAYESIANS/MARKOVIANS USE ALL INFORMATION AVAILABLE -PER USER-, INOCULATION, MINEFIELDING, AND JUST-IN-TIME FILTERING GAIN INFORMATION (AND ACCURACY) BY LOOKING ACROSS AN ENTIRE SITE OR ACROSS MULTIPLE SITES.

UNPROVEN HYPOTHESIS

BAYESIAN/MARKOVIANS WITH 100'S OF USERS SHARING INOCULATIONS, WITH MINEFIELDS, AND WITH JUST-IN-TIME FILTERING COULD REASONABLY GET TO FIVE-NINES (99.999%) ACCURACY, AND POSSIBLY APPROACH 99.999% (ONE ERROR PER MILLION EMAILS) ACCURACY.

THANK YOU ALL!

ARE THERE ANY QUESTIONS?

HANDY WEB SITES:

HTTP://WWW.CAMRAM.ORG

HTTP://WWW.PAULGRAHAM.COM

HTTP://CRM114.SOURCEFORGE.NET

SUMMER (THAT MEANS IT'S WARM) SPAM
CONFERENCE:

HTTP://WWW.CEAS.CC